In this work, we use the notion of ``symmetry'' of functions for an extension$K/L$ of finite fields to produce extensions of a function field $F/K$ in whichalmost all places of degree one split completely. Then we introduce the notionof ``quasi-symmetry'' of functions for $K/L$, and demonstrate its use inproducing extensions of $F/K$ in which all places of degree one splitcompletely. Using these techniques, we are able to restrict the ramificationeither to one chosen rational place, or entirely to non-rational places. Wethen apply these methods to the related problem of building asymptotically goodtowers of function fields. We construct examples of towers of function fieldsin which all rational places split completely throughout the tower. Weconstruct Abelian towers with this property also. Furthermore, all of the above are done explicitly, ie., we give generatorsfor the extensions, and equations that they satisfy. We also construct an integral basis for a set of places in a tower offunction fields meeting the Drinfeld-Vladut bound using the discriminant of thetower localized at each place. Thus we are able to obtain a basis for acollection of functions that contains the set of regular functions in thistower. Regular functions are of interest in the theory of error-correctingcodes as they lead to an explicit description of the code associated to thetower by providing the code's generator matrix.
展开▼
机译:在这项工作中,我们对有限域的扩展$ K / L $使用函数的``对称性''概念来生成函数域$ F / K $的扩展,在其中几乎所有一级度的地方都完全分开了。然后我们介绍了$ K / L $函数的``准对称''概念,并演示了其在$ F / K $的扩展生成中的使用,其中扩展了所有一级度的地方。使用这些技术,我们可以将结果限制在一个选择的理性位置,或者完全限制在非理性位置。然后,将这些方法应用于构建功能域渐近优良塔的相关问题。我们构建了功能域塔的示例,其中所有有理位置都在塔中完全分开。我们也可以使用此属性来构造阿贝尔塔。此外,以上所有步骤都是明确完成的,即,我们给出扩展的生成器以及它们满足的方程。我们还使用位于每个位置的塔的判别式,为满足Drinfeld-Vladut界限的功能域塔中的一组位置构建了不可或缺的基础。因此,我们能够获得包含此塔中一组常规功能的功能集合的基础。常规函数在纠错码的理论中很重要,因为它们通过提供代码的生成器矩阵来导致与塔相关的代码的显式描述。
展开▼